

DELTA 7¹⁰

TRANSMISSIVE WAVEFRONT MODULATOR

DPP TECHNOLOGY

The Delta 7 is based on the Deformable Phase Plate (DPP) technology, exclusively developed by Phaseform GmbH. DPP is composed of a fluidic chamber, enclosed by a thin membrane, which is deformed by electrostatic force. The force is generated by a 2D array of transparent electrodes embedded within the optical aperture of the DPP. The sophisticated optofluidic design of the 10 mm aperture DPP enables gravity-neutral performance for orientation-independent, high-quality wavefront modulation.

KEY FEATURES

Complex wavefront modulation

63 electrodes enabling replication of up to the 7th radial order of Zernike polynomials (>35 modes) with high fidelity

Straightforward system integration

Compact housing compatible with standard 30 mm cage systems by rods, lens tubes, and post assemblies

Linear & hysteresis-free response

Electrostatic actuation suited for open-loop wavefront control

Remarkable optical quality

Active best flat with an induced RMS wavefront error of less than $\lambda/40$

Polarization-independent

Wavefront modulation independent of the light polarization for maximized efficiency

SPECIFICATIONS

GENERAL

Modulator type

Clear aperture diameter Number of actuators

Number of actuators across aperture diameter

Connectivity
Operating system
Driving software

OPTICAL

Wavefront RMS error of best flat Maximum peak-to-valley of the generated wavefronts Maximum spatial frequency of the correction Optical transmission (VIS-NIR version)

Wavefront RMS drift Laser Induced Damage Threshold (LIDT) Nominal operation laser power

Included in the Delta 7 package

Optofluidic DPP (Deformable Phase Plate), electrostatically actuated

10 mm

7

USB 2.0

Windows, Linux, and macOS

SDK and GUI available in Python. Wrapper to execute Python functions in Matlab.

< 15 nm (orientation independent)

>7 um

7th radial order of Zernike modes

400 nm-1700 nm 80% at λ=500 nm < 5% after 60 min

10 W/cm² for 10s @ 1070 nm CW Factory calibrated for < 100 mW CW (over full optical aperture)

Driving electronics, control software, cables, manual

SPECIFICATIONS, CONT.

MECHANICAL

Thickness (within clear aperture)

Response time (best flat to maximum deformation)

Hysteresis

Linearity

Mounting capability

Connector cable length

ELECTRICAL

Actuator voltage

Maximum power consumption

Power supply

THERMAL

Storage temperature
Operating temperature

0.87 mm

< 40 ms

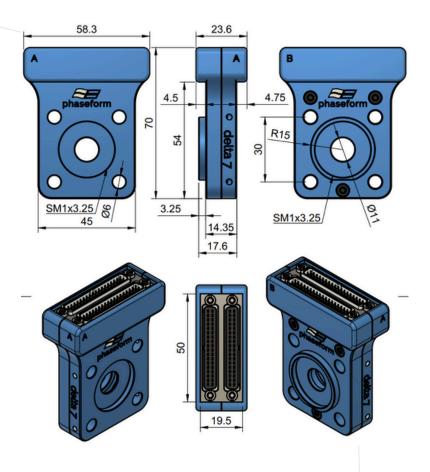
<1%

>92%

30 mm cage system rods, SM1 tubing, and

 \emptyset =1/2" post

1.5 m

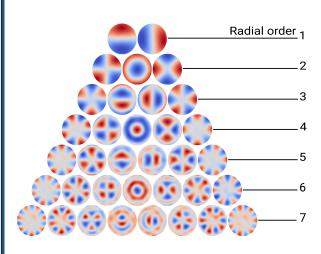

up to 295 VDC

<9W

120/230 VAC, 2.5 phono plug (included)

10 °C to 35 °C 20 °C to 25 °C

OPTICS HOUSING MECHANICAL DRAWINGS



GENERATED ZERNIKE MODES IN OPEN LOOP

Max amplitude RMS, peak-to-valley, and purity of generated Zernike modes

Z (n,m)	RMS [µm]	PV [μm]	Purity [%]	Z (n,m)	RMS [µm]	PV [µm]	Purity [%]
Z (1,-1)	2	7	98	Z (5,3)	0.15	0.7	82
Z (1,1)	2	7	97	Z (5,5)	0.15	0.9	90
Z (2,-2)	1	3.8	96	Z (6,-6)	0.1	0.8	83
Z (2,0)	1	3.8	96	Z (6,-4)	0.07	0.5	70
Z (2,2)	1	3.8	96	Z (6,-2)	0.07	0.5	77
Z (3,-3)	0.5	2.5	94	Z (6,0)	0.1	0.6	77
Z (3,-1)	0.5	1.7	94	Z (6,2)	0.07	0.5	73
Z (3,1)	0.5	1.7	93	Z (6,4)	0.07	0.5	70
Z (3,3)	0.5	2.5	95	Z (6,6)	0.1	0.8	77
Z (4,-4)	0.25	1.3	93	Z (7,-7)	0.07	0.6	74
Z (4,-2)	0.25	1.1	88	Z (7,-5)	0.07	0.5	70
Z (4,0)	0.25	1.2	91	Z (7,-3)	0.07	0.5	70
Z (4,2)	0.25	1.1	86	Z (7,-1)	0.07	0.5	70
Z (4,4)	0.25	1.3	94	Z (7,1)	0.07	0.5	70
Z (5,-5)	0.15	0.9	90	Z (7,3)	0.07	0.5	70
Z (5,-3)	0.15	0.7	84	Z (7,5)	0.07	0.5	70
Z (5,-1)	0.15	0.8	80	Z (7,7)	0.07	0.6	78
Z (5,1)	0.15	0.8	80				

^{*}Purity is defined as the fraction of the target Zernike mode relative to the root-sum of all modes

DISCLAIMER

All specifications are preliminary and subject to change without notice. No representation or warranty, either expressed or implied, is made as to the reliability, completeness, or accuracy of this specification sheet.

CONTACT US

Phaseform GmbH

Georges-Köhler-Allee 302 79110 Freiburg i.B. Germany www.phaseform.com info@phaseform.com +49 761 216 0800 0

Phaseform is supported by

